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 On page 196 and fig. 2-104 of Ref. [1], appears a large-signal model of the PWM switch operated in the 
so-called quasi-square wave resonant mode. In order to analytically obtain the ac response of a current-mode 
flyback converter operated in the quasi-square wave resonant mode (also known as valley- switching operation), 
a new small-signal model has to be derived. First, let us try to simplify the large signal model given in Ref. [1]. 
In this model, the average current flowing in terminal “c” is written to stick to the PWM switch current-mode 
original notations: a main current source delivering a peak current equal to the control voltage Vc divided by the 
sense resistor Ri to which a source Iµ subtracts some current. However, in a converter operated in Borderline 
Conduction Mode (BCM) where the dead time is negligible, the average current flowing through terminal “c” is 
simply the peak current value divided by 2. Capitalizing on this fact, the Iµ source can disappear and an updated 
version of the large-signal model appears on figure 1: 
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Figure 1: the PWM switch model in Borderline Conduction Mode once simplified. 
 
In this model, we have the following source definitions: 
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If we use Eqs. (1) and (2) to develop Eq. (4), we have: 
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The classical small-signal analysis requires the introduction of a perturbation on all the variables of the system. 
That is to say, we should transform equations Eqs. (3) and (5) by perturbing the following variables: 
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0 ˆac ac acV V v= +   (6d) 

0 ˆc c cV V v= +   (6e) 
 
The 0-indiced terms represent the dc point of the variable whereas the ^ denotes the small ac variations around 
that dc point. Unfortunately, when you update the concerned variables into Eqs. (3) and (5), the exercise which 
consists of sorting out and gathering all the dc and ac terms becomes a rather tedious operation. One possible 
solution is to build an ac-only model, without any bias point capabilities. In this method, the ac terms are 
considered and the dc solutions are purposely left away. After all, we can always calculate the dc conditions 
either by using equations-based results or simply by running a bias point simulation with Fig. 1 large signal 
model. To obtain ac terms only, we can calculate the sensitivity of each current to the variables of concern listed 
in equations 6a to 6e. Let us apply this option to Eq. (3): 
 

ˆ ˆc
c c

c

Ii v
V
∂

=
∂

 (7) 

 

1ˆ ˆ ˆ
2c c c c

i

i v v k
R

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (8) 

 
Where kc is simply: 
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Let us apply a similar technique to equation (5) now: 
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Once we derived Eq. (10), we obtain the following terms: 
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Assuming: 
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we can re-write equation (11) the following way: 
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Re-arranging the original large-signal model with these new source definitions, the updated small-signal model 
appears in figure 2: 
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Figure 2: the updated small-signal model uses four current sources. 
 
A BCM flyback converter 
 
 Our main application is a flyback converter operated in Borderline Conduction Mode. The 
implementation of the BCM small-signal model in this configuration appears in figure 3: 
 

a
c

p

vc.kc
v(c,p).kcp

ic.kic
v(a,c).kac

ic

X5
XFMR
RATIO = N

Resr

Cout

Rload

Vout

Lp

Vin

 
Figure 3: the small-signal model with a flyback converter. 
 
In this application, observing the various terminal connections, we can update the coefficient definitions: 
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We can thus evaluate the coefficient parameters: 
 

( )

2
0 0

2 222

in c in c
cp

i out inout
i in

V V V V Nk
R V NVVR V

N

= =
+⎛ ⎞+⎜ ⎟

⎝ ⎠

 (15a) 

out

out
ic

out out in
in

V
VNk V V NVV

N

= =
++

  (15b) 

( )

0

0
2 2

2
2

out c

i out c
ac

i out inout
in

V V
N R V V Nk

R V NVVV
N

= =
+⎛ ⎞+⎜ ⎟

⎝ ⎠

 (15c) 

 

 Using this configuration, let us find the dc small-signal gain , 0
ˆ0 0
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dc and Vin is considered constant during the study, terminal “a” goes to ground. Then, all capacitors are opened 
and the inductor is shorted: terminal “c” goes to ground as well. Since v(a,c) is null, the associated source 
disappears. Then, the load is reflected on the primary side using the transformer turns ratio squared. As a second 
observation, we can see that the current source involving kcp, appears between the terminals “c” and “p”. 
Therefore, a resistance of value 1/ kcp can be placed across the terminal “p” and ground. Finally, capitalizing on 
all these changes leads to the below equivalent schematic: 
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Figure 4: the dc small-signal gain is found by shorting the inductor and opening the capacitor. As Vin is constant, 
its small-signal value is 0. 
 



The voltage appearing across R8 is equal to the current source value B8, delivering current to the parallel 
combination of R8 and the reflected load. Let’s call Req this compound resistor: 
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The small-signal output voltage equation is therefore: 
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In the above equation, the minus sign passed to the transformer turns ratio – our flyback delivers a positive 
voltage, whereas a buck-boost gives a negative output – has been included in the expression. From Eq. (17), we 
can derive the dc gain of the BCM flyback: 
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Application example 
 
 A simple open-loop flyback has been wired using the PWM switch model described in Ref. [1]. This a 
converter delivering 19.2 V to a 10 Ω load from a 100-Vdc input source. The control voltage is set to 1.7 V and 
imposes a 1.7 A peak current. 
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Figure 5: a large-signal simulation of a BCM flyback converter running open-loop. 
 
From the above dc points, we can calculate our source coefficients: 
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The equivalent resistor is found to be: 
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The dc gain is derived using Eq. (18): 
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If we run Fig. 5 simulation template, we obtain the below gain curve: 
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Figure 6: the dc gain given by the linearized large-signal model sticks to the result given by Eq. (21). 

 
Ac analysis 
 
 The control to output ac analysis implies that inductors and capacitors are back in place as in Fig. 3. The 
new schematic appears in Fig. 7. 
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Figure 7: the elements are back in place for the ac analysis. 
 
The schematic looks a bit complicated at the first glance, but a careful writing of the equations will lead us to the 
correct result rather quickly. In Fig. 7, we can see a current source B5 delivering current to complex impedance 
made of the reflected capacitor, its ESR and the load resistor. However, B5 current is diverted into the inductor 
by B6. The equation of the output voltage is thus: 
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Factoring 1−kic: 
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The transfer function now comes easily: 
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The term kcpZ(s) combines reflected elements on the primary side. Let’s see how to derive it: 
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Developing and re-arranging all terms gives: 
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Introducing this expression into the small-signal gain we have derived (Eq. (28)) gives: 
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From this expression, we can identify: 
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A left-half plane zero: 
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A right-half place zero: 
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Entering Eq. (35) into Mathcad gives us the complete ac picture: 
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Figure 8: the small-signal plot of Eq. (31) using Mathcad. 
 
Numerical application 
 
 If we now use the numerical values calculated for the various coefficients, based on Fig. 5 schematic, 
we can locate the following poles and zeros: 
 

0 17.9G dB=   (36a) 

1 1.59zf kHz=  (36b) 

2 18.7zf kHz=  (36c) 

1 199.7pf Hz=  (36d) 
 
If we neglect the ESR contribution to Eq. 36d, the new pole is positioned at 1 228pf Hz= . 
 
Reference [2] describes the derivation of BCM structures using the loss-free network concept. The given 
expressions for the gain, pole and zeros are the following: 
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Reference [2] did not consider the ESR of the capacitor in the derivation of the models. Eq. (36b) does not 
change. 
 



 The full ac simulation, including phase and gain appears in Fig. 9 where we have purposely added in the 
background, the Mathcad plot: 
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Figure 9: the comparison between the Bode plot given by the SPICE simulation of the non-linear BCM model as 
applied in Fig. 5 and the Mathcad transfer function. 
 
As one can see, both plots perfectly superimpose on each other showing the validity of the approach described 
here. 
 
 
 
References 
 

1. Christophe Basso, “Switch-Mode Power Supplies: SPICE Simulations and Practical Designs”, 
McGraw-Hill, 2008. 

2. J. Chen, B. Erickson, D. Masksimović, “Average Switch Modeling of Boundary Conduction Mode Dc-
to-Dc Converters, Proc. IEEE Industrial Electronics Society Annual Conference (IECON 01), Nov. 
2001, vol. 2, pp. 842-849. 

 
 
 
 
 
 
 
 


